Zeros of Bessel function derivatives

Árpád Baricz

Babeș-Bolyai University, Department of Economics, Cluj-Napoca, Romania
Óbuda University, Institute of Applied Mathematics, Budapest, Hungary
https://sites.google.com/site/bariczocsi/
e-mail: bariczocsi@yahoo.com

1Supported by a grant for young researchers of Babeș-Bolyai Univ. project no. GTC-31777.
Abstract

The zeros of Bessel functions and their derivatives play an important role in mathematical physics, and other areas of natural sciences. In this talk our aim is to offer a detailed overview of the results concerning the real zeros of the Bessel functions of the first kind and their derivatives. We prove that for \(\nu > n − 1 \) all zeros of the \(n \)th derivative of Bessel function of the first kind \(J_\nu \) are real. Moreover, we show that the positive zeros of the \(n \)th and \((n + 1)\)th derivative of Bessel function of the first kind \(J_\nu \) are interlacing when \(\nu \geq n \), and \(n \) is a natural number or zero. Our methods include the Weierstrassian representation of the \(n \)th derivative, properties of the Laguerre-Pólya class of entire functions, and the Laguerre inequalities. The main results obtained in this talk generalize and complement some classical results on the zeros of Bessel functions of the first kind. Some conjectures related to Hurwitz theorem on the zeros of Bessel functions are also proposed, which may be of interest for further research.
Definition of Bessel functions of the first and second kind

- By definition, the Bessel functions of the first kind J_ν is a particular solution of the second order homogeneous Bessel differential equation

$$x^2 y''(x) + xy'(x) + (x^2 - \nu^2)y(x) = 0.$$
Definition of Bessel functions of the first and second kind

By definition the Bessel functions of the first kind J_ν is a particular solution of the second order homogeneous Bessel differential equation

$$x^2 y''(x) + xy'(x) + (x^2 - \nu^2)y(x) = 0.$$

The solutions of the above Bessel differential equation are sometimes referred to as cylinder functions, since they appear as solutions of boundary value problems for partial differential equations in domains with cylindrical symmetry.
Definition of Bessel functions of the first and second kind

• By definition the Bessel functions of the first kind J_ν is a particular solution of the second order homogeneous Bessel differential equation

$$x^2 y''(x) + xy'(x) + (x^2 - \nu^2)y(x) = 0.$$

The solutions of the above Bessel differential equation are sometimes referred to as cylinder functions, since they appear as solutions of boundary value problems for partial differential equations in domains with cylindrical symmetry.

• The Bessel function of the first kind J_ν has the power series and Poisson integral representation as follows

$$J_\nu(x) = \sum_{n \geq 0} \frac{(-1)^n \left(\frac{1}{2}x\right)^{2n+\nu}}{n! \Gamma(n + \nu + 1)},$$
By definition the Bessel functions of the first kind J_ν is a particular solution of the second order homogeneous Bessel differential equation

$$x^2 y''(x) + xy'(x) + (x^2 - \nu^2)y(x) = 0.$$

The solutions of the above Bessel differential equation are sometimes referred to as cylinder functions, since they appear as solutions of boundary value problems for partial differential equations in domains with cylindrical symmetry.

The Bessel function of the first kind J_ν has the power series and Poisson integral representation as follows

$$J_\nu(x) = \sum_{n \geq 0} \frac{(-1)^n \left(\frac{1}{2}x\right)^{2n+\nu}}{n!\Gamma(n+\nu+1)},$$

$$J_\nu(x) = \frac{2}{\sqrt{\pi}\Gamma\left(\nu + \frac{1}{2}\right)} \int_0^1 (1 - t^2)^{\nu - \frac{1}{2}} \cos(\nu t) dt, \quad \nu > -\frac{1}{2}.$$
The following results are well-known:

- If \(\nu > -1 \), then all zeros of the Bessel function \(J\nu \) are real.

- Theorem (Lommel)

- Theorem (Hurwitz)

- If \(s \) is a nonnegative integer and \(-2s - 2 < \nu < -2s - 1 \), then \(J\nu \) has \(4s + 2 \) non-real zeros, of which two are purely imaginary.

- If \(s \) is a positive integer and \(-2s - 1 < \nu < -2s \), then \(J\nu \) has \(4s \) non-real zeros, of which none are purely imaginary.

- It is worth to mention that all zeros of \(J\nu \), except \(x = 0 \) possibly, are simple.
The following results are well-known:

Theorem (Lommel)\(^a\)

\(^a\)E.C.J. Lommel, Studies über Besselschen Funktionen (Teubner, Leipzig, 1868).

If \(\nu > -1 \), *then all zeros of the Bessel function* \(J_{\nu} \) *are real.*
The following results are well-known:

Theorem (Lommel\(^a\))

\(^{a}\)E.C.J. Lommel, Studies über Besselschen Funktionen (Teubner, Leipzig, 1868).

If \(\nu > -1 \), then all zeros of the Bessel function \(J_\nu \) are real.

Theorem (Hurwitz\(^a\))

\(^{a}\)A. Hurwitz, Über die Nullstellen der Besselschen Funktionen, Math. Ann. 33 (1889) 246–266.

The following assertions are true:

1. If \(\nu > -1 \), then the zeros of \(J_\nu \) are all real.
2. If \(s \) is a nonnegative integer and \(-2s - 2 < \nu < -2s - 1 \), then \(J_\nu \) has \(4s + 2 \) non-real zeros, of which two are purely imaginary.
3. If \(s \) is a positive integer and \(-2s - 1 < \nu < -2s \), then \(J_\nu \) has \(4s \) non-real zeros, of which none are purely imaginary.

It is worth to mention that all zeros of \(J_\nu \), except \(x = 0 \) possibly, are simple.
Distribution of real and non-real zeros of Bessel function J_{ν}

- The following results are well-known:

Theorem (Lommela)

aE.C.J. Lommel, Studies über Besselschen Funktionen (Teubner, Leipzig, 1868).

If $\nu > -1$, *then all zeros of the Bessel function* J_{ν} *are real.*

Theorem (Hurwitza)

The following assertions are true:

1. If $\nu > -1$, then the zeros of J_{ν} are all real.
The following results are well-known:

Theorem (Lommel\(^a\))

\(^a\)E.C.J. Lommel, Studies über Besselschen Funktionen (Teubner, Leipzig, 1868).

If \(\nu > -1\), then all zeros of the Bessel function \(J_\nu\) are real.

Theorem (Hurwitz\(^a\))

\(^a\)A. Hurwitz, Über die Nullstellen der Besselschen Funktionen, Math. Ann. 33 (1889) 246–266.

The following assertions are true:

1. *If \(\nu > -1\), then the zeros of \(J_\nu\) are all real.*
2. *If \(s\) is a nonnegative integer and \(-2s - 2 < \nu < -2s - 1\), then \(J_\nu\) has \(4s + 2\) non-real zeros, of which two are purely imaginary.*
Distribution of real and non-real zeros of Bessel function J_ν

- The following results are well-known:

Theorem (Lommela)

aE.C.J. Lommel, Studies über Besselschen Funktionen (Teubner, Leipzig, 1868).

If $\nu > -1$, then all zeros of the Bessel function J_ν are real.

Theorem (Hurwitza)

The following assertions are true:

1. *If $\nu > -1$, then the zeros of J_ν are all real.*
2. *If s is a nonnegative integer and $-2s - 2 < \nu < -2s - 1$, then J_ν has $4s + 2$ non-real zeros, of which two are purely imaginary.*
3. *If s is a positive integer and $-2s - 1 < \nu < -2s$, then J_ν has $4s$ non-real zeros, of which none are purely imaginary.*
The following results are well-known:

Theorem (Lommela)

aE.C.J. Lommel, Studies über Besselschen Funktionen (Teubner, Leipzig, 1868).

If $\nu > -1$, then all zeros of the Bessel function J_ν are real.

Theorem (Hurwitza)

aA. Hurwitz, Über die Nullstellen der Besselschen Funktionen, Math. Ann. 33 (1889) 246–266.

The following assertions are true:

1. If $\nu > -1$, then the zeros of J_ν are all real.
2. If s is a nonnegative integer and $-2s - 2 < \nu < -2s - 1$, then J_ν has $4s + 2$ non-real zeros, of which two are purely imaginary.
3. If s is a positive integer and $-2s - 1 < \nu < -2s$, then J_ν has $4s$ non-real zeros, of which none are purely imaginary.

It is worth to mention that all zeros of J_ν, except $x = 0$ possibly, are simple.
Zeros of Bessel functions via Lommel polynomials

- Hurwitz’s proof

Zeros of Bessel functions via Lommel polynomials

- Hurwitz’s proof

\[g_{m,\nu}(x) = \sum_{n=0}^{\infty} C_n^{m-n}(-1)^n \frac{x^n}{\Gamma(\nu+n+1)} \]

\[\lim_{m \to \infty} g_{m,\nu}(x) = x^{-\nu/2}J_{\nu}(2\sqrt{x}) = \sum_{n \geq 0} (-1)^n \frac{x^n}{n!\Gamma(\nu+n+1)}. \]

3 If \(\nu > -1 \), then \(g_{2m,\nu} \) has \(m \) positive zeros.

4 If \(s \) is a nonnegative integer and \(-2s-2 < \nu < -2s-1 \), then \(g_{2m,\nu} \) has \(m-2s-1 \) positive zeros, 1 negative zero and 2s complex zeros.

5 If \(s \) is a positive integer and \(-2s-1 < \nu < -2s \), then \(g_{2m,\nu} \) has \(m-2s \) positive zeros and 2s complex zeros.

Zeros of Bessel functions via Lommel polynomials

- Hurwitz’s proof\(^2\) was reconsidered and corrected by Watson

\(^4\) G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944
Zeros of Bessel functions via Lommel polynomials

- Hurwitz’s proof\(^2\) was reconsidered and corrected by Watson\(^3\),

\(^4\) G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944
Hurwitz’s proof\(^2\) was reconsidered and corrected by Watson\(^3\), see also his book\(^4\).

\(^4\) G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944
Zeros of Bessel functions via Lommel polynomials

- Hurwitz’s proof\(^2\) was reconsidered and corrected by Watson\(^3\), see also his book\(^4\).
- The modified Lommel polynomial

\[
g_{2m,\nu}(x) = \sum_{n=0}^{m} C_{m-n}^n \frac{(-1)^n \Gamma(\nu + m - n + 1)x^n}{\Gamma(\nu + n + 1)}
\]

has the following properties:

1. \[
\lim_{m \to \infty} \frac{g_{m,\nu}(x)}{\Gamma(\nu + m + 1)} = x^{\frac{\nu}{2}} J_{\nu}(2\sqrt{x}) = \sum_{n \geq 0} \frac{(-1)^n x^n}{n! \Gamma(\nu + n + 1)}. \quad \text{(denoted by } f_{\nu}(x)\text{)}
\]

\(^4\) G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944
Zeros of Bessel functions via Lommel polynomials

- Hurwitz’s proof was reconsidered and corrected by Watson, see also his book.
- The modified Lommel polynomial

\[g_{2m, \nu}(x) = \sum_{n=0}^{m} C_{m-n}^{n} \frac{(-1)^n \Gamma(\nu + m - n + 1)x^n}{\Gamma(\nu + n + 1)} \]

has the following properties:

1. \[\lim_{m \to \infty} \frac{g_{m, \nu}(x)}{\Gamma(\nu+m+1)} = x^{-\frac{\nu}{2}} J_{\nu}(2\sqrt{x}) = \sum_{n \geq 0} \frac{(-1)^n x^n}{n! \Gamma(\nu+n+1)}. \] (denoted by \(f_\nu(x) \))

2. \[g_{m+1, \nu}(x) = (\nu + m + 1)g_{m, \nu}(x) - xg_{m-1, \nu}(x). \]

• Hurwitz’s proof\(^2\) was reconsidered and corrected by Watson\(^3\), see also his book\(^4\).
• The modified Lommel polynomial

\[
g_{2m,\nu}(x) = \sum_{n=0}^{m} C_{m-n}^{n} \frac{(-1)^n \Gamma(\nu + m - n + 1)x^n}{\Gamma(\nu + n + 1)}
\]

has the following properties:

1. \(\lim_{m \to \infty} \frac{g_{m,\nu}(x)}{\Gamma(\nu + m + 1)} = x^{-\frac{\nu}{2}} J_{\nu}(2\sqrt{x}) = \sum_{n \geq 0} \frac{(-1)^n x^n}{n! \Gamma(\nu + n + 1)}.\) (denoted by \(f_{\nu}(x)\))

2. \(g_{m+1,\nu}(x) = (\nu + m + 1)g_{m,\nu}(x) - xg_{m-1,\nu}(x).\)

3. If \(\nu > -1\), then \(g_{2m,\nu}\) has \(m\) positive zeros.

Zeros of Bessel functions via Lommel polynomials

- Hurwitz’s proof\(^2\) was reconsidered and corrected by Watson\(^3\), see also his book\(^4\).
- The modified Lommel polynomial
 \[g_{2m,\nu}(x) = \sum_{n=0}^{m} C_{m-n}^{n} \frac{(-1)^{n} \Gamma(\nu + m - n + 1) x^{n}}{\Gamma(\nu + n + 1)} \]

has the following properties:

1. \[\lim_{m \to \infty} \frac{g_{m,\nu}(x)}{\Gamma(\nu + m + 1)} = x^{-\frac{\nu}{2}} J_{\nu}(2\sqrt{x}) = \sum_{n \geq 0} \frac{(-1)^{n} x^{n}}{n! \Gamma(\nu + n + 1)}. \] (denoted by \(f_{\nu}(x) \))
2. \[g_{m+1,\nu}(x) = (\nu + m + 1)g_{m,\nu}(x) - xg_{m-1,\nu}(x). \]
3. If \(\nu > -1 \), then \(g_{2m,\nu} \) has \(m \) positive zeros.
4. If \(s \) is a nonnegative integer and \(-2s - 2 < \nu < -2s - 1 \), then \(g_{2m,\nu} \) has \(m - 2s - 1 \) positive zeros, 1 negative zero and \(2s \) complex zeros.

Zeros of Bessel functions via Lommel polynomials

- Hurwitz’s proof² was reconsidered and corrected by Watson³, see also his book⁴.
- The modified Lommel polynomial

\[g_{2m,\nu}(x) = \sum_{n=0}^{m} C_{m-n}^{n} \frac{(-1)^{n} \Gamma(\nu + m - n + 1)x^{n}}{\Gamma(\nu + n + 1)} \]

has the following properties:

1. \(\lim_{m \to \infty} \frac{g_{m,\nu}(x)}{\Gamma(\nu + m + 1)} = x^{-\frac{\nu}{2}} J_{\nu}(2\sqrt{x}) = \sum_{n \geq 0} \frac{(-1)^{n}x^{n}}{n!\Gamma(\nu + n + 1)} \). (denoted by \(f_{\nu}(x) \))
2. \(g_{m+1,\nu}(x) = (\nu + m + 1)g_{m,\nu}(x) - xg_{m-1,\nu}(x) \).
3. If \(\nu > -1 \), then \(g_{2m,\nu} \) has \(m \) positive zeros.
4. If \(s \) is a nonnegative integer and \(-2s - 2 < \nu < -2s - 1 \), then \(g_{2m,\nu} \) has \(m - 2s - 1 \) positive zeros, 1 negative zero and \(2s \) complex zeros.
5. If \(s \) is a positive integer and \(-2s - 1 < \nu < -2s \), then \(g_{2m,\nu} \) has \(m - 2s \) positive zeros and \(2s \) complex zeros.

The Laguerre polynomial

\[L^{(n)}_{\alpha}(x) = \sum_{m=0}^{n} C^n_m \frac{(-1)^m x^m}{m!} \]

has the following properties:

1. \(\lim_{n \to \infty} x^{-\nu} L^n_{n} \left(\frac{x}{n} \right) = x^{-\frac{\nu}{2}} J_{\nu}(2\sqrt{x}) = \sum_{n \geq 0} \frac{(-1)^n x^n}{n!(\nu+n+1)}. \) (denoted by \(f_{\nu}(x) \))

Zeros of Bessel functions via Laguerre polynomials

- The Laguerre polynomial

\[L_n^{(\alpha)}(x) = \sum_{m=0}^{n} C_n^m \frac{(-1)^m x^m}{m!} \]

has the following properties:

1. \[\lim_{n \to \infty} x^{-\nu} L_n^{(\nu)} \left(\frac{x}{n} \right) = x^{-\frac{\nu}{2}} J_{\nu}(2\sqrt{x}) = \sum_{n \geq 0} \frac{(-1)^n x^n}{n!(\nu+n+1)}. \] (denoted by \(f_\nu(x) \))

2. If \(n > \beta \), \(\beta \) is not an integer, then the polynomial \(L_n^{(-\beta)}(x) \) has \(\lfloor \beta \rfloor \) nonpositive zeros which are all complex, except a single negative one in case \(\lfloor \beta \rfloor \) is odd. See E. Stridsberg\(^5\) and W. Hahn\(^6\).

3. The number of positive zeros of \(L_n^{(\alpha)}(x) \) is \(n \) if \(\alpha > -1 \); it is \(n + \lfloor \alpha \rfloor + 1 \) if \(-n < \alpha < -1\); and it is 0 if \(\alpha < -n \). The number of negative zeros is 0 or 1. See E. Hille and G. Szegő\(^7\).

\(^5\) E. Stridsberg, Några aritmetiska undersökningar rorande fakulteter och vissa allmännare Koefficientsviter, Not 2, Arkiv Mat., Astronomi och Fysik 13(25) (1918) 1–70.

\(^6\) W. Hahn, Die Nullstellen der Laguerreschen und Hermiteschen Polynôme, Schriften des Mathematischen Seminars und des Instituts für angewandte Mathematik der Universität Berlin 1 (1933) 213–244.

Theorem (Peyerimhoffa)

Let f be a real entire function of order $\rho < 1$ with infinitely many zeros $\{a_k\}_{k \in \mathbb{N}}$, and assume that for some nonnegative integer n we have

$a_k \in \{x + iy \mid x \geq 0, \; \text{then } y \neq 0\}$ for $k \in \{1, \ldots, n\}$; and $0 < a_{n+1} < a_{n+2} < \ldots$
Theorem (Peyerimhoffa)

Let \(f \) be a real entire function of order \(\rho < 1 \) with infinitely many zeros \(\{ a_k \}_{k \in \mathbb{N}} \), and assume that for some nonnegative integer \(n \) we have
\[
a_k \in \{ x + iy \mid \text{if } x \geq 0, \text{ then } y \neq 0 \} \text{ for } k \in \{ 1, \ldots, n \}; \text{ and } 0 < a_{n+1} < a_{n+2} < \ldots .
\]
If \(g(x) = \alpha f(x) + xf'(x) \) has exactly one real zero between two zeros \(a_m, a_{m+1} \), \(m \in \{ n+1, n+2, \ldots \} \), then \(g \) has exactly \(n + 1 \) zeros in
\[
\{ x + iy \mid \text{if } x \geq a_{n+1}, \text{ then } y \neq 0 \}.
\]
Theorem (Peyerimhoffa)

Let f be a real entire function of order $\rho < 1$ with infinitely many zeros $\{a_k\}_{k \in \mathbb{N}}$, and assume that for some nonnegative integer n we have

$a_k \in \{x + iy | \text{if } x \geq 0, \text{ then } y \neq 0\}$ for $k \in \{1, \ldots, n\}$; and $0 < a_{n+1} < a_{n+2} < \ldots$.

If $g(x) = \alpha f(x) + xf'(x)$ has exactly one real zero between two zeros a_m, a_{m+1}, $m \in \{n + 1, n + 2, \ldots\}$, then g has exactly $n + 1$ zeros in $\{x + iy | \text{if } x \geq a_{n+1}, \text{ then } y \neq 0\}$.

The function f_ν.

Árpád Baricz (Babeș-Bolyai and Óbuda University)
Zeros of Bessel functions via power series

Theorem (Peyerimhoffa)

Let f be a real entire function of order $\rho < 1$ with infinitely many zeros $\{a_k\}_{k \in \mathbb{N}}$, and assume that for some nonnegative integer n we have $a_k \in \{x + iy | \text{ if } x \geq 0, \text{ then } y \neq 0\}$ for $k \in \{1, \ldots, n\}$; and $0 < a_{n+1} < a_{n+2} < \ldots$. If $g(x) = \alpha f(x) + xf'(x)$ has exactly one real zero between two zeros a_m, a_{m+1}, $m \in \{n+1, n+2, \ldots\}$, then g has exactly $n + 1$ zeros in $\{x + iy | \text{ if } x \geq a_{n+1}, \text{ then } y \neq 0\}$.

The function f_{ν} has the following properties
Let f be a real entire function of order $\rho < 1$ with infinitely many zeros $\{a_k\}_{k \in \mathbb{N}}$, and assume that for some nonnegative integer n we have $a_k \in \{x + iy \mid x \geq 0, \text{ then } y \neq 0\}$ for $k \in \{1, \ldots, n\}$; and $0 < a_{n+1} < a_{n+2} < \ldots$. If $g(x) = \alpha f(x) + xf'(x)$ has exactly one real zero between two zeros a_m, a_{m+1}, $m \in \{n + 1, n + 2, \ldots\}$, then g has exactly $n + 1$ zeros in $\{x + iy \mid x \geq a_{n+1}, \text{ then } y \neq 0\}$.

The function f_ν has the following properties $f'_\nu(x) = -f_{\nu+1}(x)$,
Let f be a real entire function of order $\rho < 1$ with infinitely many zeros $\{a_k\}_{k \in \mathbb{N}}$, and assume that for some nonnegative integer n we have

$a_k \in \{x + iy \mid x \geq 0, \text{ then } y \neq 0\}$ for $k \in \{1, \ldots, n\}$; and $0 < a_{n+1} < a_{n+2} < \ldots$.

If $g(x) = \alpha f(x) + xf'(x)$ has exactly one real zero between two zeros a_m, a_{m+1}, $m \in \{n+1, n+2, \ldots\}$, then g has exactly $n + 1$ zeros in $\{x + iy \mid x \geq a_{n+1}, \text{ then } y \neq 0\}$.

The function f_ν has the following properties $f'_\nu(x) = -f_{\nu+1}(x)$,

$$f_\nu(x) = (\nu + 1)f_{\nu+1}(x) + xf'_{\nu+1}(x), \quad xf''_\nu(x) + (\nu + 1)f'_\nu(x) + f_\nu(x) = 0.$$
Zeros of Bessel functions via power series

Theorem (Peyerimhoffa)

Let f be a real entire function of order $\rho < 1$ with infinitely many zeros \$a_k\$ for $k \in \mathbb{N}$, and assume that for some nonnegative integer n we have $a_k \in \{x + iy \mid x \geq 0\}$ for $k \in \{1, \ldots, n\}$; and $0 < a_{n+1} < a_{n+2} < \ldots$.

If $g(x) = \alpha f(x) + xf'(x)$ has exactly one real zero between two zeros $a_m, a_{m+1}, m \in \{n+1, n+2, \ldots\}$, then g has exactly $n + 1$ zeros in \$\{x + iy \mid x \geq a_{n+1}, \text{then } y \neq 0\}\$.

The function f_ν has the following properties $f'_\nu(x) = -f_{\nu+1}(x)$,

$$f_\nu(x) = (\nu + 1)f_{\nu+1}(x) + xf'_{\nu+1}(x), \quad xf''_\nu(x) + (\nu + 1)f'_\nu(x) + f_\nu(x) = 0.$$

Theorem (Peyerimhoffa)

If $s \in \mathbb{N}$ and $-s < \nu < -s + 1$, then f_ν has exactly $s - 1$ zeros that are not positive. Moreover, the function f_ν has exactly one negative zero if $s = 2k$, no negative zero if $s = 2k - 1$, where $k \in \mathbb{N}$.

Árpád Baricz (Babeş-Bolyai and Óbuda University)
Zeros of Bessel function derivatives
November 29, 2016 7 / 24
To define the notion of the Fourier critical point let f be a real entire function defined in an open interval $(a, b) \subset \mathbb{R}$. Let $l \in \mathbb{N}$ and suppose that $c \in (a, b)$ is a zero of $f^{(l)}(x)$ of multiplicity $m \in \mathbb{N}$, that is, $f^{(l)}(c) = \cdots = f^{(l+m-1)}(c) = 0$ and $f^{(l+m)}(c) \neq 0$. Now, let $k = 0$ if $f^{(l-1)}(c) = 0$, otherwise let

$$k = \begin{cases}
\frac{1}{2}m, & \text{if } m \text{ is even,} \\
\frac{1}{2}(m + 1), & \text{if } m \text{ is odd and } f^{(l-1)}(c)f^{(l+m)}(c) > 0, \\
\frac{1}{2}(m - 1), & \text{if } m \text{ is odd and } f^{(l-1)}(c)f^{(l+m)}(c) < 0.
\end{cases}$$

We say that $f^{(l)}(x)$ has k critical zeros and $m - k$ noncritical zeros at $x = c$. A point in (a, b) is said to be a Fourier critical point of f if some derivative of f has a critical zero at the point.
Zeros of Bessel functions via Fourier critical points

To define the notion of the Fourier critical point let \(f \) be a real entire function defined in an open interval \((a, b) \subset \mathbb{R}\). Let \(l \in \mathbb{N} \) and suppose that \(c \in (a, b) \) is a zero of \(f^{(l)}(x) \) of multiplicity \(m \in \mathbb{N} \), that is, \(f^{(l)}(c) = \cdots = f^{(l+m-1)}(c) = 0 \) and \(f^{(l+m)}(c) \neq 0 \). Now, let \(k = 0 \) if \(f^{(l-1)}(c) = 0 \), otherwise let

\[
k = \begin{cases}
\frac{1}{2} m, & \text{if } m \text{ is even}, \\
\frac{1}{2} (m + 1), & \text{if } m \text{ is odd and } f^{(l-1)}(c)f^{(l+m)}(c) > 0, \\
\frac{1}{2} (m - 1), & \text{if } m \text{ is odd and } f^{(l-1)}(c)f^{(l+m)}(c) < 0.
\end{cases}
\]

Definition (Ki, Kim\(^{a}\))

We say that \(f^{(l)}(x) \) has \(k \) critical zeros and \(m - k \) noncritical zeros at \(x = c \). A point in \((a, b)\) is said to be a Fourier critical point of \(f \) if some derivative of \(f \) has a critical zero at the point.
Zeros of Bessel functions via Fourier critical points

• To define the notion of the Fourier critical point let \(f \) be a real entire function defined in an open interval \((a, b) \subset \mathbb{R}\). Let \(l \in \mathbb{N} \) and suppose that \(c \in (a, b) \) is a zero of \(f^{(l)}(x) \) of multiplicity \(m \in \mathbb{N} \), that is, \(f^{(l)}(c) = \cdots = f^{(l+m-1)}(c) = 0 \) and \(f^{(l+m)}(c) \neq 0 \). Now, let \(k = 0 \) if \(f^{(l-1)}(c) = 0 \), otherwise let

\[
k = \begin{cases}
\frac{1}{2} m, & \text{if } m \text{ is even,} \\
\frac{1}{2} (m + 1), & \text{if } m \text{ is odd and } f^{(l-1)}(c)f^{(l+m)}(c) > 0, \\
\frac{1}{2} (m - 1), & \text{if } m \text{ is odd and } f^{(l-1)}(c)f^{(l+m)}(c) < 0.
\end{cases}
\]

Definition (Ki, Kim\(^a\))

We say that \(f^{(l)}(x) \) has \(k \) critical zeros and \(m - k \) noncritical zeros at \(x = c \). A point in \((a, b)\) is said to be a Fourier critical point of \(f \) if some derivative of \(f \) has a critical zero at the point.

• For example, \(\cosh x \) has infinitely many Fourier critical points at the origin with no other Fourier critical points, and the polynomial \(1 - x^2 + x^8 \) has four Fourier critical points in the whole real axis.
Zeros of Bessel functions via Fourier critical points

- To define the notion of the Fourier critical point let \(f \) be a real entire function defined in an open interval \((a, b) \subset \mathbb{R}\). Let \(l \in \mathbb{N} \) and suppose that \(c \in (a, b) \) is a zero of \(f^{(l)}(x) \) of multiplicity \(m \in \mathbb{N} \), that is, \(f^{(l)}(c) = \cdots = f^{(l+m-1)}(c) = 0 \) and \(f^{(l+m)}(c) \neq 0 \). Now, let \(k = 0 \) if \(f^{(l-1)}(c) = 0 \), otherwise let

\[
k = \begin{cases}
\frac{1}{2}m, & \text{if } m \text{ is even}, \\
\frac{1}{2}(m + 1), & \text{if } m \text{ is odd and } f^{(l-1)}(c)f^{(l+m)}(c) > 0, \\
\frac{1}{2}(m - 1), & \text{if } m \text{ is odd and } f^{(l-1)}(c)f^{(l+m)}(c) < 0.
\end{cases}
\]

Definition (Ki, Kim\(^a\))

We say that \(f^{(l)}(x) \) has \(k \) critical zeros and \(m - k \) noncritical zeros at \(x = c \). A point in \((a, b)\) is said to be a Fourier critical point of \(f \) if some derivative of \(f \) has a critical zero at the point.

- For example, \(\cosh x \) has infinitely many Fourier critical points at the origin with no other Fourier critical points, and the polynomial \(1 - x^2 + x^8 \) has four Fourier critical points in the whole real axis. A real analytic function \(f \) has a Fourier critical point if and only if some derivative of \(f \) has more real zeros than guaranteed by Rolle’s theorem.
The zeros $x_1 = -\frac{1}{2} \sqrt[3]{4}$ and $x_2 = -\frac{1}{2} \sqrt[3]{4}$ are critical zeros of $q'(x) = 8x^7 - 2x$; $q''(x) = 56x^6 - 2$ has no critical zeros; and $q'''(x) = 336x^5$ has two critical zeros ($x_3 = x_4 = 0$) and three noncritical zeros; $q^{(l)}$ for $l \in \{4, 5, 6, 7\}$ has no critical zero.
Fourier’s unproved theorem

Let P be a real polynomial of degree $d > 1$. For $n \in \{0, 1, \ldots, d - 1\}$, let $2J_n$ denote the number of nonreal zeros of $P^{(n)}(x)$.
Fourier’s unproved theorem

Let P be a real polynomial of degree $d > 1$. For $n \in \{0, 1, \ldots, d - 1\}$, let $2J_n$ denote the number of nonreal zeros of $P^{(n)}(x)$. Then it can be shown that $P^{(n)}(x)$ has exactly $J_{n-1} - J_n$ critical zeros for $n \in \{1, \ldots, d - 1\}$.
Fourier’s unproved theorem

Let P be a real polynomial of degree $d > 1$. For $n \in \{0, 1, \ldots, d - 1\}$, let $2J_n$ denote the number of nonreal zeros of $P^{(n)}(x)$. Then it can be shown that $P^{(n)}(x)$ has exactly $J_{n-1} - J_n$ critical zeros for $n \in \{1, \ldots, d - 1\}$. Since $P^{(d-1)}(x)$ certainly has only real zeros, we obtain the following rule of de Gua: a real polynomial has just as many Fourier critical points as couples of non-real zeros.
Fourier’s unproved theorem

Let P be a real polynomial of degree $d > 1$. For $n \in \{0, 1, \ldots, d - 1\}$, let $2J_n$ denote the number of nonreal zeros of $P^{(n)}(x)$. Then it can be shown that $P^{(n)}(x)$ has exactly $J_{n-1} - J_n$ critical zeros for $n \in \{1, \ldots, d - 1\}$. Since $P^{(d-1)}(x)$ certainly has only real zeros, we obtain the following rule of de Gua: a real polynomial has just as many Fourier critical points as couples of non-real zeros.

(G. Pólya) In his work *Théorie de la chaleur*, published in 1822, Fourier proved that the Bessel function $J_0(2\sqrt{x})$ has no (Fourier) critical points. Then he applied de Gua algebraical rule to the transcendental entire function $J_0(2\sqrt{x})$ without further inquiry and concluded that the Bessel function J_0 has only real zeros.
Fourier’s unproved theorem

• Let P be a real polynomial of degree $d > 1$. For $n \in \{0, 1, \ldots, d - 1\}$, let $2J_n$ denote the number of nonreal zeros of $P^{(n)}(x)$. Then it can be shown that $P^{(n)}(x)$ has exactly $J_{n-1} - J_n$ critical zeros for $n \in \{1, \ldots, d - 1\}$. Since $P^{(d-1)}(x)$ certainly has only real zeros, we obtain the following rule of de Gua: a real polynomial has just as many Fourier critical points as couples of non-real zeros.

• (G. Pólya) In his work *Théorie de la chaleur*, published in 1822, Fourier proved that the Bessel function $J_0(2\sqrt{x})$ has no (Fourier) critical points. Then he applied de Gua algebraical rule to the transcendental entire function $J_0(2\sqrt{x})$ without further inquiry and concluded that the Bessel function J_0 has only real zeros. After the publication of the work, Cauchy and Poisson expressed doubt about the validity of Fourier’s reasoning. Later Fourier tried to justify his argument by establishing a general theorem; he formulated the following theorem in his work *Analyse des équations déterminées*, but he did not give a proof.
Fourier’s unproved theorem

- Let P be a real polynomial of degree $d > 1$. For $n \in \{0, 1, \ldots, d - 1\}$, let $2J_n$ denote the number of nonreal zeros of $P^{(n)}(x)$. Then it can be shown that $P^{(n)}(x)$ has exactly $J_{n-1} - J_n$ critical zeros for $n \in \{1, \ldots, d - 1\}$. Since $P^{(d-1)}(x)$ certainly has only real zeros, we obtain the following rule of de Gua: a real polynomial has just as many Fourier critical points as couples of non-real zeros.

- (G. Pólya) In his work *Théorie de la chaleur*, published in 1822, Fourier proved that the Bessel function $J_0(2\sqrt{x})$ has no (Fourier) critical points. Then he applied de Gua algebraical rule to the transcendental entire function $J_0(2\sqrt{x})$ without further inquiry and concluded that the Bessel function J_0 has only real zeros. After the publication of the work, Cauchy and Poisson expressed doubt about the validity of Fourier’s reasoning. Later Fourier tried to justify his argument by establishing a general theorem; he formulated the following theorem in his work *Analyse des équations déterminées*, but he did not give a proof.

Theorem (Fourier unproved theorem)

Let f be a real entire function and suppose that f can be expressed as the product of a finite or an infinite number of linear factors of the form $(1 - x/\alpha)$, $(1 - x/\beta)$, $(1 - x/\gamma)$, Then f has just as many Fourier critical points as couples of non-real zeros.
A real entire function f is of genus 1^* if it can be expressed in the form $f(x) = e^{-\alpha x^2}g(x)$, where $\alpha \geq 0$ and g is a real polynomial or a real entire function of genus 0 or 1.
Pólya conjectures on Fourier critical points

- A real entire function f is of genus 1^* if it can be expressed in the form
 \[f(x) = e^{-\alpha x^2} g(x), \]
 where $\alpha \geq 0$ and g is a real polynomial or a real entire function of genus 0 or 1. In 1930 Pólya conjectured the followings:

\[\text{Conjecture (Pólya)} \]

A real integral function of genus 0 has just as many Fourier critical points as couples of imaginary zeros.

Conjecture (Pólya)

If a real integral function of genus 1 has only a finite number of imaginary zeros, it has just as many Fourier critical points as couples of imaginary zeros.

Conjecture (Pólya)

If a real integral function f of genus 1 has only a finite number of imaginary zeros, its derivatives from a certain one onward, let us say $f^{(n)}$, $f^{(n+1)}$, ... , have only real zeros.
Pólya conjectures on Fourier critical points

- A real entire function f is of genus 1^* if it can be expressed in the form
 $$f(x) = e^{-\alpha x^2} g(x),$$
 where $\alpha \geq 0$ and g is a real polynomial or a real entire function of genus 0 or 1. In 1930 Pólya conjectured the followings:

Conjecture (Pólyaa)

A real integral function of genus 0 has just as many Fourier critical points as couples of imaginary zeros.
Pólya conjectures on Fourier critical points

- A real entire function f is of genus 1^* if it can be expressed in the form $f(x) = e^{-\alpha x^2} g(x)$, where $\alpha \geq 0$ and g is a real polynomial or a real entire function of genus 0 or 1. In 1930 Pólya conjectured the followings:

Conjecture (Pólyaa)

A real integral function of genus 0 has just as many Fourier critical points as couples of imaginary zeros.

Conjecture (Pólya)

If a real integral function of genus 1^* has only a finite number of imaginary zeros, it has just as many Fourier critical points as couples of imaginary zeros.
Pólya conjectures on Fourier critical points

- A real entire function f is of genus 1^* if it can be expressed in the form
 \[f(x) = e^{-\alpha x^2} g(x), \]
 where $\alpha \geq 0$ and g is a real polynomial or a real entire function of genus 0 or 1. In 1930 Pólya conjectured the followings:

Conjecture (Pólyaa)

A real integral function of genus 0 has just as many Fourier critical points as couples of imaginary zeros.

Conjecture (Pólya)

If a real integral function of genus 1^ has only a finite number of imaginary zeros, it has just as many Fourier critical points as couples of imaginary zeros.*

Conjecture (Pólya)

If a real integral function f of genus 1^ has only a finite number of imaginary zeros, its derivatives from a certain one onward, let us say $f^{(n)}$, $f^{(n+1)}$, \ldots, have only real zeros.*
Solutions of the Fourier-Pólya conjectures

Theorem (Ki, Kim\(^a\))

Let \(f \) be a real entire function that is at most of order 1 and minimum type, let \(b_1, b_2, \ldots \) denote the real zeros of \(f \) that are different from zero, and suppose that
\[
\sum_{|b_j| < r} b_j^{-1} \to \beta \quad \text{as} \quad r \to \infty \quad \text{for some real} \ \beta.
\]
Then for each real constant \(\delta \), the function \(e^{\delta x} f(x) \) has just as many Fourier critical points as couples of non-real zeros.
Solutions of the Fourier-Pólya conjectures

Theorem (Ki, Kim)

Let f be a real entire function that is at most of order 1 and minimum type, let b_1, b_2, \ldots denote the real zeros of f that are different from zero, and suppose that

$$\sum_{|b_j|<r} b_j^{-1} \to \beta \text{ as } r \to \infty$$

for some real β. Then for each real constant δ, the function $e^{\delta x} f(x)$ has just as many Fourier critical points as couples of non-real zeros.

Theorem (Ki, Kim)

Let f be an even or odd real entire function that is at most of order 2 and minimum type, let b_1, b_2, \ldots denote the real zeros of f that are different from zero, and suppose that

$$\sum_{j>1} b_j^{-2} < \infty.$$

Then for each nonnegative real constant α, the function $e^{-\alpha x^2} f(x)$ has just as many Fourier critical points as couples of non-real zeros.
Solutions of the Fourier-Pólya conjectures

Theorem (Ki, Kima)

Let f be a real entire function that is at most of order 1 and minimum type, let b_1, b_2, \ldots denote the real zeros of f that are different from zero, and suppose that
\[\sum_{|b_j|<r} b_j^{-1} \to \beta \text{ as } r \to \infty \text{ for some real } \beta. \]
Then for each real constant δ, the function $e^{\delta x} f(x)$ has just as many Fourier critical points as couples of non-real zeros.

Theorem (Ki, Kim)

Let f be an even or odd real entire function that is at most of order 2 and minimum type, let b_1, b_2, \ldots denote the real zeros of f that are different from zero, and suppose that
\[\sum_{j \geq 1} b_j^{-2} < \infty. \]
Then for each nonnegative real constant α, the function $e^{-\alpha x^2} f(x)$ has just as many Fourier critical points as couples of non-real zeros.

Theorem (Ki, Kim)

Every real entire function of genus 0 has just as many Fourier critical points as couples of non-real zeros.
Consider the auxiliary function g_{ν}, defined by

$$g_{\nu}(x) = \sum_{n \geq 0} \frac{x^n}{\Gamma(n + \nu + 1)n!}.$$

We have that

$$J_{\nu}(x) = \left(\frac{x}{2} \right)^\nu g_{\nu} \left(-\frac{x^2}{4} \right).$$
Proof of Hurwitz theorem on the zeros of Bessel functions

- Consider the auxiliary function g_{ν}, defined by

$$g_{\nu}(x) = \sum_{n \geq 0} \frac{x^n}{\Gamma(n + \nu + 1)n!}.$$

We have that

$$J_{\nu}(x) = \left(\frac{x}{2}\right)^\nu g_{\nu} \left(-\frac{x^2}{4}\right).$$

The function g_{ν} is a real entire function of order $\frac{1}{2}$, so that it is of genus 0.
Proof of Hurwitz theorem on the zeros of Bessel functions

Consider the auxiliary function g_ν, defined by

$$g_\nu(x) = \sum_{n \geq 0} \frac{x^n}{\Gamma(n + \nu + 1)n!}.$$

We have that

$$J_\nu(x) = \left(\frac{x}{2}\right)^\nu g_\nu \left(-\frac{x^2}{4}\right).$$

The function g_ν is a real entire function of order $\frac{1}{2}$, so that it is of genus 0. Hurwitz’s theorem follows once we prove the followings:

Theorem (Ki, Kima)

The following assertions are true:
Proof of Hurwitz theorem on the zeros of Bessel functions

- Consider the auxiliary function \(g_\nu \), defined by

\[
g_\nu(x) = \sum_{n \geq 0} \frac{x^n}{\Gamma(n + \nu + 1)n!}.
\]

We have that

\[
J_\nu(x) = \left(\frac{x}{2} \right)^\nu g_\nu \left(-\frac{x^2}{4} \right).
\]

The function \(g_\nu \) is a real entire function of order \(\frac{1}{2} \), so that it is of genus 0. Hurwitz’s theorem follows once we prove the followings:

Theorem (Ki, Kim\(^a\))

The following assertions are true:

1. If \(\nu > -1 \), then \(g_\nu \) has no Fourier critical points and positive real zeros.
Proof of Hurwitz theorem on the zeros of Bessel functions

Consider the auxiliary function g_ν, defined by

$$g_\nu(x) = \sum_{n \geq 0} \frac{x^n}{\Gamma(n + \nu + 1)n!}.$$

We have that

$$J_\nu(x) = \left(\frac{x}{2}\right)^\nu g_\nu \left(-\frac{x^2}{4}\right).$$

The function g_ν is a real entire function of order $\frac{1}{2}$, so that it is of genus 0. Hurwitz’s theorem follows once we prove the followings:

Theorem (Ki, Kima)

The following assertions are true:

1. If $\nu > -1$, then g_ν has no Fourier critical points and positive real zeros.
2. If s is a nonnegative integer and $2s - 2 < \nu < -2s - 1$, then g_ν has exactly s Fourier critical points and one positive real zero.
Proof of Hurwitz theorem on the zeros of Bessel functions

Consider the auxiliary function g_ν, defined by

$$g_\nu(x) = \sum_{n \geq 0} \frac{x^n}{\Gamma(n + \nu + 1)n!}.$$

We have that

$$J_\nu(x) = \left(\frac{x}{2}\right)^\nu g_\nu \left(-\frac{x^2}{4}\right).$$

The function g_ν is a real entire function of order $1/2$, so that it is of genus 0. Hurwitz’s theorem follows once we prove the followings:

Theorem (Ki, Kim\textcopyright)

\textit{The following assertions are true:}

1. If $\nu > -1$, then g_ν has no Fourier critical points and positive real zeros.
2. If s is a nonnegative integer and $2s - 2 < \nu < -2s - 1$, then g_ν has exactly s Fourier critical points and one positive real zero.
3. If s is a positive integer and $-2s - 1 < \nu < -2s$, then g_ν has exactly s Fourier critical points and no positive real zeros.
Proof of Hurwitz theorem on the zeros of Bessel functions

Consider the auxiliary function \(g_\nu \), defined by

\[
g_\nu(x) = \sum_{n \geq 0} \frac{x^n}{\Gamma(n + \nu + 1)n!}.
\]

We have that

\[
J_\nu(x) = \left(\frac{x}{2} \right)^\nu g_\nu \left(-\frac{x^2}{4} \right).
\]

The function \(g_\nu \) is a real entire function of order \(\frac{1}{2} \), so that it is of genus 0. Hurwitz’s theorem follows once we prove the followings:

Theorem (Ki, Kim\(^a\))

The following assertions are true:

1. If \(\nu > -1 \), then \(g_\nu \) has no Fourier critical points and positive real zeros.
2. If \(s \) is a nonnegative integer and \(2s - 2 < \nu < -2s - 1 \), then \(g_\nu \) has exactly \(s \) Fourier critical points and one positive real zero.
3. If \(s \) is a positive integer and \(-2s - 1 < \nu < -2s \), then \(g_\nu \) has exactly \(s \) Fourier critical points and no positive real zeros.
Proof of Hurwitz theorem on the zeros of Bessel functions

Theorem (Ki, Kim*)

Let s be a nonnegative integer. Then we have the following:

1. If $2s - 2 < \nu < -2s - 1$, then g_ν has exactly one positive real zero.

Árpád Baricz (Babeş-Bolyai and Óbuda University)

Zeros of Bessel function derivatives

November 29, 2016 14 / 24
Proof of Hurwitz theorem on the zeros of Bessel functions

Theorem (Ki, Kima)

Let s be a nonnegative integer. Then we have the following:

1. If $2s - 2 < \nu < -2s - 1$, then g_ν has exactly one positive real zero.
2. If s is a positive integer and $-2s - 1 < \nu < -2s$, then $g_\nu(x) \geq 0$ for $x \geq 0$.
Proof of Hurwitz theorem on the zeros of Bessel functions

Theorem (Ki, Kim)

Let s be a nonnegative integer. Then we have the following:

1. If \(2s - 2 < \nu < -2s - 1\), then \(g_\nu\) has exactly one positive real zero.
2. If \(s\) is a positive integer and \(-2s - 1 < \nu < -2s\), then \(g_\nu(x) \geq 0\) for \(x \geq 0\).

Is it possible to use the above idea of Ki and Kim for other special functions? For example, for Struve functions, Lommel functions, or derivatives of Bessel functions?
Proof of Hurwitz theorem on the zeros of Bessel functions

Theorem (Ki, Kima)

Let \(s \) be a nonnegative integer. Then we have the following:

1. If \(2s - 2 < \nu < -2s - 1 \), then \(g_\nu \) has exactly one positive real zero.
2. If \(s \) is a positive integer and \(-2s - 1 < \nu < -2s \), then \(g_\nu(x) \geq 0 \) for \(x \geq 0 \).

In the proofs of the above results two relations were very important:

\[
g^{(l)}_\nu(x) = g_{\nu+l}(x)
\]

and

\[
g^{(l-1)}_\nu(x) - (\nu + l)g^{(l)}_\nu(x) - xg^{(l+1)}_\nu(x) = 0.
\]
Proof of Hurwitz theorem on the zeros of Bessel functions

Theorem (Ki, Kim\(^a\))

Let \(s \) be a nonnegative integer. Then we have the following:

1. If \(2s - 2 < \nu < -2s - 1 \), then \(g_\nu \) has exactly one positive real zero.
2. If \(s \) is a positive integer and \(-2s - 1 < \nu < -2s \), then \(g_\nu(x) \geq 0 \) for \(x \geq 0 \).

- In the proofs of the above results two relations were very important:

\[
g_\nu^{(l)}(x) = g_{\nu+l}(x)
\]

and

\[
g_\nu^{(l-1)}(x) - (\nu + l)g_\nu^{(l)}(x) - xg_\nu^{(l+1)}(x) = 0.
\]

- Is it possible to use the above idea of Ki and Kim for other special functions?
Proof of Hurwitz theorem on the zeros of Bessel functions

Theorem (Ki, Kim\(^a\))

Let \(s\) be a nonnegative integer. Then we have the following:

1. If \(2s − 2 < \nu < −2s − 1\), then \(g_\nu\) has exactly one positive real zero.
2. If \(s\) is a positive integer and \(−2s − 1 < \nu < −2s\), then \(g_\nu(x) \geq 0\) for \(x \geq 0\).

• In the proofs of the above results two relations were very important:

\[
g_\nu^{(l)}(x) = g_{\nu+l}(x)
\]

and

\[
g_\nu^{(l-1)}(x) − (\nu + l)g_\nu^{(l)}(x) − xg_\nu^{(l+1)}(x) = 0.
\]

• Is it possible to use the above idea of Ki and Kim for other special functions? For example, for Struve functions, Lommel functions, or derivatives of Bessel functions?
In view of the results on the zeros of the nth derivative of Bessel functions of the first kind, when $n \in \{0, 1, 2, 3\}$, the statements of the following theorem are very natural and somehow expected, they provide the extensions of some classical results on the zeros of Bessel function of the first kind and its derivative of the first order. In the sequel of this talk n and s are from $\mathbb{N}_0 = \{0, 1, 2, \ldots \}$.
Zeros of Bessel function derivatives

- In view of the results on the zeros of the nth derivative of Bessel functions of the first kind, when $n \in \{0, 1, 2, 3\}$, the statements of the following theorem are very natural and somehow expected, they provide the extensions of some classical results on the zeros of Bessel function of the first kind and its derivative of the first order. In the sequel of this talk n and s are from $\mathbb{N}_0 = \{0, 1, 2, \ldots \}$.

Theorem (Baricz, Kokologiannaki, Pogánya)

aÁ. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

The following assertions are valid:
• In view of the results on the zeros of the \(n \)th derivative of Bessel functions of the first kind, when \(n \in \{0, 1, 2, 3\} \), the statements of the following theorem are very natural and somehow expected, they provide the extensions of some classical results on the zeros of Bessel function of the first kind and its derivative of the first order. In the sequel of this talk \(n \) and \(s \) are from \(\mathbb{N}_0 = \{0, 1, 2, \ldots \} \).

Theorem (Baricz, Kokologiannaki, Pogány\(^a\))

\(^a\)Á. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

The following assertions are valid:

1. If \(\nu > n - 1 \), then \(x \mapsto J_{\nu}^{(n)}(x) \) has infinitely many zeros, which are all real.
In view of the results on the zeros of the nth derivative of Bessel functions of the first kind, when $n \in \{0, 1, 2, 3\}$, the statements of the following theorem are very natural and somehow expected, they provide the extensions of some classical results on the zeros of Bessel function of the first kind and its derivative of the first order. In the sequel of this talk n and s are from $\mathbb{N}_0 = \{0, 1, 2, \ldots \}$.

Theorem (Baricz, Kokologiannaki, Pogánya)

aÁ. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

The following assertions are valid:

1. If $\nu > n - 1$, then $x \mapsto J^{(n)}_{\nu}(x)$ has infinitely many zeros, which are all real.
2. If $\nu \geq n$, then the positive zeros of the nth and $(n + 1)$th derivative of J_{ν} are interlacing.
In view of the results on the zeros of the nth derivative of Bessel functions of the first kind, when $n \in \{0, 1, 2, 3\}$, the statements of the following theorem are very natural and somehow expected, they provide the extensions of some classical results on the zeros of Bessel function of the first kind and its derivative of the first order. In the sequel of this talk n and s are from $\mathbb{N}_0 = \{0, 1, 2, \ldots \}$.

Theorem (Baricz, Kokologiannaki, Pogánya)

aÁ. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

The following assertions are valid:

1. If $\nu > n - 1$, then $x \mapsto J_{\nu}^{(n)}(x)$ has infinitely many zeros, which are all real.
2. If $\nu \geq n$, then the positive zeros of the nth and $(n + 1)$th derivative of J_{ν} are interlacing.
3. If $\nu > n - 1$, then all zeros of $x \mapsto (n - \nu)J_{\nu}^{(n)}(x) + xJ_{\nu}^{(n+1)}(x)$ are real and interlace with the zeros of $x \mapsto J_{\nu}^{(n)}(x)$.
Sketch of the proof

1. Weierstrassian canonical representations of the nth derivative
Sketch of the proof

1. Weierstrassian canonical representations of the nth derivative
2. Growth order of the nth derivative
Sketch of the proof

1. Weierstrassian canonical representations of the nth derivative
2. Growth order of the nth derivative
3. Mathematical induction on n
Sketch of the proof

1. Weierstrassian canonical representations of the nth derivative
2. Growth order of the nth derivative
3. Mathematical induction on n
4. Mittag-Leffler expansion for the nth derivative
Sketch of the proof

1. Weierstrassian canonical representations of the nth derivative
2. Growth order of the nth derivative
3. Mathematical induction on n
4. Mittag-Leffler expansion for the nth derivative
5. Laguerre inequality for entire functions of the Laguerre-Pólya class
Sketch of the proof

1. Weierstrassian canonical representations of the \(n \)th derivative
2. Growth order of the \(n \)th derivative
3. Mathematical induction on \(n \)
4. Mittag-Leffler expansion for the \(n \)th derivative
5. Laguerre inequality for entire functions of the Laguerre-Pólya class
6. Laguerre theorem on separation of zeros
It is important to mention that the second part of the above theorem in particular reduces to the chains of inequalities

\[j''', 1 < j''', 2 < j''', 3 < j''', 4 < \ldots, \quad \nu \geq 2 \]

and

\[j''', 1 < j''', 2 < j''', 3 < j''', 4 < \ldots, \quad \nu \geq 1, \]

where \(j''', n \) and \(j''', n \) denote the \(n \)th positive zero of \(J'' \) and \(J''' \), respectively.
It is important to mention that the second part of the above theorem in particular reduces to the chains of inequalities
\[
\tilde{j}''', 1 < \tilde{j}'', 1 < \tilde{j}''', 2 < \tilde{j}''', 3 < \ldots, \quad \nu \geq 2
\]
and
\[
\tilde{j}''', 1 < \tilde{j}'', 1 < \tilde{j}''', 2 < \tilde{j}''', 3 < \tilde{j}''', 3 < \ldots, \quad \nu \geq 1,
\]
where \(\tilde{j}''', n\) and \(\tilde{j}''', n\) denote the \(n\)th positive zero of \(J''\) and \(J'''\), respectively.

These inequalities complement the well-known ones
\[
\tilde{j}'', 1 < \tilde{j}', 1 < \tilde{j}'', 2 < \tilde{j}'', 2 < \tilde{j}', 3 < \ldots, \quad \nu \geq 0,
\]
where \(\tilde{j}', n\) and \(\tilde{j}'', n\) denote the \(n\)th positive zero of \(J\) and \(J'\), respectively.
It is important to mention that the second part of the above theorem in particular reduces to the chains of inequalities

\[j'''_{\nu,1} < j''_{\nu,1} < j'''_{\nu,2} < j''_{\nu,2} < j'''_{\nu,3} < j''_{\nu,3} < \ldots, \quad \nu \geq 2 \]

and

\[j''_{\nu,1} < j'_{\nu,1} < j''_{\nu,2} < j'_{\nu,2} < j''_{\nu,3} < j'_{\nu,3} < \ldots, \quad \nu \geq 1, \]

where \(j''_{\nu,n} \) and \(j'''_{\nu,n} \) denote the \(n \)th positive zero of \(J'_{\nu} \) and \(J'''_{\nu} \), respectively.

These inequalities complement the well-known ones

\[j'_{\nu,1} < j_{\nu,1} < j'_{\nu,2} < j_{\nu,2} < j'_{\nu,3} < j_{\nu,3} < \ldots, \quad \nu \geq 0, \]

where \(j_{\nu,n} \) and \(j'_{\nu,n} \) denote the \(n \)th positive zero of \(J_{\nu} \) and \(J'_{\nu} \), respectively.

We also note that the third part of the above theorem is actually a generalization of the well-known result that for \(\nu > -1 \) the zeros of the Bessel functions \(J_{\nu} \) and \(J_{\nu+1} \) are interlacing. Namely, by choosing \(n = 0 \) in the third part we get that the zeros of \(J_{\nu} \) and \(x \mapsto xJ'_{\nu}(x) - \nu J_{\nu}(x) = xJ_{\nu+1}(x) \) are interlacing.
A real entire function ψ belongs to the Laguerre-Pólya class \mathcal{LP} if it can be represented in the form

$$
\psi(x) = cx^m e^{-ax^2 + bx} \prod_{n \geq 1} \left(1 + \frac{x}{x_n} \right) e^{-\frac{x}{x_n}},
$$

with $c, b, x_n \in \mathbb{R}$, $a \geq 0$, $m \in \mathbb{N}_0$ and $\sum_{n \geq 1} x_n^{-2} < \infty$. We note that the class \mathcal{LP} consists of entire functions which are uniform limits on the compact sets of the complex plane of polynomials with only real zeros.
The Laguerre-Pólya class of real entire functions

- A real entire function \(\psi \) belongs to the Laguerre-Pólya class \(\mathcal{LP} \) if it can be represented in the form

\[
\psi(x) = cx^m e^{-ax^2 + bx} \prod_{n \geq 1} \left(1 + \frac{x}{x_n}\right) e^{-\frac{x}{x_n}},
\]

with \(c, b, x_n \in \mathbb{R}, a \geq 0, m \in \mathbb{N}_0 \) and \(\sum_{n \geq 1} x_n^{-2} < \infty \). We note that the class \(\mathcal{LP} \) consists of entire functions which are uniform limits on the compact sets of the complex plane of polynomials with only real zeros.

Theorem (Baricz, Kokologiannaki, Pogány)\(^{\text{a}}\)

\(^{\text{a}}\)Á. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

If \(\nu > n - 1 \), *then all the zeros of the Laguerre-type polynomial*

\[
_3F_3\left(-s, \frac{\nu + 1}{2}, \frac{\nu}{2} + 1; \nu + 1, \frac{\nu - n + 1}{2}, \frac{\nu - n}{2} + 1; x\right)
\]

are real and simple.
Laguerre-type polynomials

- We note that the denomination Laguerre-type polynomial for the Jensen polynomial appearing in the above theorem is justified by the facts that the case \(n = 0 \) reduces to the well-known generalized Laguerre polynomial \(\genfrac{}{}{0pt}{}{1}{1} \left(-s; \nu + 1; x \right) \) \(^8\), the case \(n = 1 \) one corresponds to the generalized hypergeometric polynomial \(\genfrac{}{}{0pt}{}{2}{2} \left(-s, \frac{\nu}{2} + 1; \nu + 1, \frac{\nu}{2}; x \right) \) which one transforms into the Koornwinder’s generalized Laguerre polynomial \(^9\), while the case \(n = 2 \) is related to the generalized Laguerre polynomial \(\genfrac{}{}{0pt}{}{3}{3} \left(-s, \frac{\nu+1}{2}, \frac{\nu}{2} + 1; \nu + 1, \frac{\nu-1}{2}, \frac{\nu}{2}; x \right) \), considered by Álvarez-Nodarse and Marcellán \(^10\).

Proof of the reality of zeros of Laguerre-type polynomials

The function

\[x \mapsto J_{\nu,n}(2\sqrt{x}) = 2^n \Gamma(\nu+1-n) x^{\frac{n-\nu}{2}} J_{\nu}^{(n)}(2\sqrt{x}) = \sum_{m\geq 0} \frac{(-1)^m \Gamma(\nu+2m+1)\Gamma(\nu+1-n)}{m!\Gamma(\nu+2m-n+1)\Gamma(\nu+m+1)} x^{m} \]

belongs to the Laguerre-Pólya class \(LP \). Consequently by using the known theorem of Jensen it follows that the Jensen polynomial of \(x \mapsto J_{\nu,n}(2\sqrt{x}) \) has only real zeros.

Now, the Jensen polynomial in the question is

\[\sum_{m=0}^{s} (-1)^m \binom{s}{m} \frac{\Gamma(\nu+2m+1)\Gamma(\nu+1-n)}{\Gamma(\nu+2m-n+1)\Gamma(\nu+m+1)} x^{m}, \]

which after some transformations and in view of the Legendre duplication formula

\[\Gamma(2x)\sqrt{\pi} = 2^{2x-1}\Gamma(x)\Gamma(x+\frac{1}{2}) \quad (1) \]

can be rewritten as

\[_{3}F_{3} \left(-s, \frac{\nu+1}{2}, \frac{\nu}{2}+1; \nu+1, \frac{\nu-n+1}{2}, \frac{\nu-n}{2}+1; x \right). \]

Moreover, according to Csordas and Williamson\(^{11}\) the zeros of the Jensen polynomials are simple, and this completes the proof of the theorem.

Motivated by Hurwitz theorem it is natural to ask about the number of complex zeros of Bessel function derivatives.

\[
\text{Conjecture (Baricz, Kokologiannaki, Pogány)}
\]

Is it true that if \(s \) is a nonnegative integer and \(n \frac{\nu - 2}{2} < \nu < n \frac{\nu - 1}{2} \), then the function \(J_{\nu}(n) \) has \(4s + 2 \) complex zeros, of which two are purely imaginary?

Is it true that if \(s \) is a positive integer and \(n \frac{\nu - 1}{2} < \nu < n \frac{\nu - 1}{2} \), then the function \(J_{\nu}(n) \) has \(4s \) complex zeros, of which none are purely imaginary?

As far as we know the methods used in order to prove Hurwitz result on zeros of Bessel functions are not working in the general situation.
• Motivated by Hurwitz theorem it is natural to ask about the number of complex zeros of Bessel function derivatives.

Conjecture (Baricz, Kokologiannaki, Pogány\(^a\))

\(^a\)Á. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

1. *Is it true that if \(s\) is a nonnegative integer and \(n - 2s - 2 < \nu < n - 2s - 1\), then the function \(J^{(n)}_\nu\) has \(4s + 2\) complex zeros, of which two are purely imaginary?*
Motivated by Hurwitz theorem it is natural to ask about the number of complex zeros of Bessel function derivatives.

Conjecture (Baricz, Kokologiannaki, Pogánya)

aÁ. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

1. Is it true that if s is a nonnegative integer and $n - 2s - 2 < \nu < n - 2s - 1$, then the function $J_{(n)}^\nu$ has $4s + 2$ complex zeros, of which two are purely imaginary?

2. Is it true that if s is a positive integer and $n - 2s - 1 < \nu < n - 2s$, then the function $J_{(n)}^\nu$ has $4s$ complex zeros, of which none are purely imaginary?
Motivated by Hurwitz theorem it is natural to ask about the number of complex zeros of Bessel function derivatives.

Conjecture (Baricz, Kokologiannaki, Pogánya)

aÁ. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

1. Is it true that if s is a nonnegative integer and $n - 2s - 2 < \nu < n - 2s - 1$, then the function $J^{(n)}_{\nu}$ has $4s + 2$ complex zeros, of which two are purely imaginary?

2. Is it true that if s is a positive integer and $n - 2s - 1 < \nu < n - 2s$, then the function $J^{(n)}_{\nu}$ has $4s$ complex zeros, of which none are purely imaginary?
Conjectures on zeros of Bessel function derivatives

- Motivated by Hurwitz theorem it is natural to ask about the number of complex zeros of Bessel function derivatives.

Conjecture (Baricz, Kokologiannaki, Pogánya)

aÁ. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

\begin{enumerate}
 \item Is it true that if s is a nonnegative integer and $n - 2s - 2 < \nu < n - 2s - 1$, then the function $J^{(n)}_\nu$ has $4s + 2$ complex zeros, of which two are purely imaginary?
 \item Is it true that if s is a positive integer and $n - 2s - 1 < \nu < n - 2s$, then the function $J^{(n)}_\nu$ has $4s$ complex zeros, of which none are purely imaginary?
\end{enumerate}

- As far as we know the methods used in order to prove Hurwitz result on zeros of Bessel functions are not working in the general situation.
Conjectures on zeros of Bessel function derivatives

Now, we consider the auxiliary function

\[f_{\nu, n}(x) = \sum_{m \geq 0} \frac{\Gamma(\nu + 2m + 1)}{\Gamma(\nu + 2m - n + 1)\Gamma(\nu + m + 1)} \frac{x^m}{m!}. \]

This function is a real entire function of growth order \(\frac{1}{2} \) and consequently of genus 0 and has just as many Fourier critical points as couples of nonreal zeros. Now, since \(2^n x^{n/2} J_{\nu}^{(n)}(2\sqrt{x}) = x^{\nu/2} f_{\nu, n}(-x) \), it follows that when \(\nu > n - 1 \) the function \(f_{\nu, n} \) has no Fourier critical points.
Conjectures on zeros of Bessel function derivatives

• Now, we consider the auxiliary function

\[f_{\nu,n}(x) = \sum_{m \geq 0} \frac{\Gamma(\nu + 2m + 1)}{\Gamma(\nu + 2m - n + 1)\Gamma(\nu + m + 1)} \frac{x^m}{m!}. \]

This function is a real entire function of growth order \(\frac{1}{2} \) and consequently of genus 0 and has just as many Fourier critical points as couples of nonreal zeros. Now, since

\[2^n x^{n/2} J_{\nu}(2\sqrt{x}) = x^{\nu/2} f_{\nu,n}(-x), \]

it follows that when \(\nu > n - 1 \) the function \(f_{\nu,n} \) has no Fourier critical points.

Conjecture (Baricz, Kokologiannaki, Pogány\(^a\))

\(^a\)Á. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

Is it true that if \(s \) is a nonnegative integer and \(n - 2s - 2 < \nu < n - 2s - 1 \), then the function \(f_{\nu,n} \) has exactly \(s \) Fourier critical points and one positive real zero?
Conjectures on zeros of Bessel function derivatives

• Now, we consider the auxiliary function

$$f_{\nu,n}(x) = \sum_{m \geq 0} \frac{\Gamma(\nu + 2m + 1)}{\Gamma(\nu + 2m - n + 1)\Gamma(\nu + m + 1)} \frac{x^m}{m!}.$$

This function is a real entire function of growth order $\frac{1}{2}$ and consequently of genus 0 and has just as many Fourier critical points as couples of nonreal zeros. Now, since

$$2^n x^{n/2} J_{\nu}^{(n)}(2\sqrt{x}) = x^{\nu/2} f_{\nu,n}(-x),$$

it follows that when $\nu > n - 1$ the function $f_{\nu,n}$ has no Fourier critical points.

Conjecture (Baricz, Kokologiannaki, Pogánya)

aÁ. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

1. Is it true that if s is a nonnegative integer and $n - 2s - 2 < \nu < n - 2s - 1$, then the function $f_{\nu,n}$ has exactly s Fourier critical points and one positive real zero?

2. Is it true that if s is a positive integer and $n - 2s - 1 < \nu < n - 2s$, then the function $f_{\nu,n}$ has exactly s Fourier critical points and no positive real zeros?
Conjectures on zeros of Bessel function derivatives

- Now, we consider the auxiliary function

\[f_{\nu,n}(x) = \sum_{m \geq 0} \frac{\Gamma(\nu + 2m + 1)}{\Gamma(\nu + 2m - n + 1)\Gamma(\nu + m + 1)} \frac{x^m}{m!}. \]

This function is a real entire function of growth order \(\frac{1}{2} \) and consequently of genus 0 and has just as many Fourier critical points as couples of nonreal zeros. Now, since

\[2^n x^{n/2} J^{(n)}_{\nu}(2\sqrt{x}) = x^{\nu/2} f_{\nu,n}(-x), \]

it follows that when \(\nu > n - 1 \) the function \(f_{\nu,n} \) has no Fourier critical points.

Conjecture (Baricz, Kokologiannaki, Pogány\(^a\))

\(^a\)Á. Baricz, C. Kokologiannaki, T.K. Pogány, Zeros of derivatives of Bessel and Struve functions, arXiv.1480790

1. Is it true that if \(s \) is a nonnegative integer and \(n - 2s - 2 < \nu < n - 2s - 1 \), then the function \(f_{\nu,n} \) has exactly \(s \) Fourier critical points and one positive real zero?

2. Is it true that if \(s \) is a positive integer and \(n - 2s - 1 < \nu < n - 2s \), then the function \(f_{\nu,n} \) has exactly \(s \) Fourier critical points and no positive real zeros?
The monotonicity of the zeros with respect to the order

Recently, Baricz and Szász12,

\begin{enumerate}
\item[15] L. Lorch, P. Szegő, Monotonicity of the zeros of the third derivative of Bessel functions, Methods Appl. Anal. 2(1) (1995) 103–111.
\item[17] R. Wong, T. Lang, On the points of inflexion of Bessel functions of positive order II, Can. J. Math. 44(3) (1991) 628–651.
\end{enumerate}
The monotonicity of the zeros with respect to the order

Recently, Baricz and Szász12, and Baricz et al.13

\begin{itemize}
\item15L. Lorch, P. Szegő, Monotonicity of the zeros of the third derivative of Bessel functions, Methods Appl. Anal. 2(1) (1995) 103–111.
\item17R. Wong, T. Lang, On the points of inflection of Bessel functions of positive order II, Can. J. Math. 44(3) (1991) 628–651.
\end{itemize}
The monotonicity of the zeros with respect to the order

Recently, Baricz and Szász12, and Baricz et al.13 found necessary and sufficient conditions on the parameter \(\nu \) such that for \(n \in \{0, 1, 2, 3\} \) the function

\[
z \mapsto 2^\nu \Gamma(\nu - n + 1) z^{\frac{n+2-\nu}{2}} J_\nu^{(n)}(\sqrt{z})
\]

is starlike (maps the open unit disk of the complex plane into a starlike domain) and all of its derivatives are close-to-convex (and hence univalent). In the proofs the key tool was that for fixed \(m \in \mathbb{N} \) and \(n \in \mathbb{N}_0 \) the \(m \)th positive zeros of \(J_\nu^{(n)}(x) \), denoted by \(j_\nu^{(n)}(m) \), are increasing with \(\nu \) on \((n-1, \infty)\), where \(n \in \{0, 1, 2, 3\} \) (see 14, 15, 16, 17 for more details).

Conjecture

Is it true that \(\nu \mapsto j_\nu^{(n)}(m) \) is increasing on \((n-1, \infty)\) for \(n \in \mathbb{N}_0 \) and \(m \in \mathbb{N} \) fixed?

15L. Lorch, P. Szegő, Monotonicity of the zeros of the third derivative of Bessel functions, Methods Appl. Anal. 2(1) (1995) 103–111.

17R. Wong, T. Lang, On the points of inflection of Bessel functions of positive order II, Can. J. Math. 44(3) (1991) 628–651.
The monotonicity of the zeros with respect to the order

Recently, Baricz and Szász12, and Baricz et al.13 found necessary and sufficient conditions on the parameter ν such that for $n \in \{0, 1, 2, 3\}$ the function $z \mapsto 2^\nu \Gamma(\nu - n + 1) z^{\frac{n+2-\nu}{2}} J_\nu^{(n)}(\sqrt{z})$ is starlike (maps the open unit disk of the complex plane into a starlike domain) and all of its derivatives are close-to-convex (and hence univalent).

15L. Lorch, P. Szegő, Monotonicity of the zeros of the third derivative of Bessel functions, Methods Appl. Anal. 2(1) (1995) 103–111.
17R. Wong, T. Lang, On the points of inflection of Bessel functions of positive order II, Can. J. Math. 44(3) (1991) 628–651.
The monotonicity of the zeros with respect to the order

Recently, Baricz and Szász12, and Baricz et al.13 found necessary and sufficient conditions on the parameter ν such that for $n \in \{0, 1, 2, 3\}$ the function

$$z \mapsto 2^{\nu} \Gamma(\nu - n + 1) z^{\frac{n+2-\nu}{2}} J_{\nu}^{(n)}(\sqrt{z})$$

is starlike (maps the open unit disk of the complex plane into a starlike domain) and all of its derivatives are close-to-convex (and hence univalent). In the proofs the key tool was that for fixed $m \in \mathbb{N}$ and $n \in \mathbb{N}_0$ the mth positive zeros of $J_{\nu}^{(n)}$, denoted by $j_{\nu,m}^{(n)}$, are increasing with ν on $(n-1, \infty)$, where $n \in \{0, 1, 2, 3\}$ (see 14).

15L. Lorch, P. Szegő, Monotonicity of the zeros of the third derivative of Bessel functions, Methods Appl. Anal. 2(1) (1995) 103–111.
17R. Wong, T. Lang, On the points of inflection of Bessel functions of positive order II, Can. J. Math. 44(3) (1991) 628–651.
The monotonicity of the zeros with respect to the order

Recently, Baricz and Szász12, and Baricz et al.13 found necessary and sufficient conditions on the parameter \(\nu \) such that for \(n \in \{0, 1, 2, 3\} \) the function \(z \mapsto 2^\nu \Gamma(\nu - n + 1) z^{\frac{n+2-\nu}{2}} J_{\nu}^{(n)}(\sqrt{z}) \) is starlike (maps the open unit disk of the complex plane into a starlike domain) and all of its derivatives are close-to-convex (and hence univalent). In the proofs the key tool was that for fixed \(m \in \mathbb{N} \) and \(n \in \mathbb{N}_0 \) the \(m \)th positive zeros of \(J_{\nu}^{(n)} \), denoted by \(j_{\nu,m}^{(n)} \), are increasing with \(\nu \) on \((n-1, \infty)\), where \(n \in \{0, 1, 2, 3\} \) (see 14, 15).

15L. Lorch, P. Szegő, Monotonicity of the zeros of the third derivative of Bessel functions, Methods Appl. Anal. 2(1) (1995) 103–111.

17R. Wong, T. Lang, On the points of inflection of Bessel functions of positive order II, Can. J. Math. 44(3) (1991) 628–651.
The monotonicity of the zeros with respect to the order

Recently, Baricz and Szász12, and Baricz et al.13 found necessary and sufficient conditions on the parameter ν such that for $n \in \{0, 1, 2, 3\}$ the function

$$z \mapsto 2^\nu \Gamma(\nu - n + 1)z^{\frac{n+2-\nu}{2}} J_{\nu}^{(n)}(\sqrt{z})$$

is starlike (maps the open unit disk of the complex plane into a starlike domain) and all of its derivatives are close-to-convex (and hence univalent). In the proofs the key tool was that for fixed $m \in \mathbb{N}$ and $n \in \mathbb{N}_0$ the mth positive zeros of $J_{\nu}^{(n)}$, denoted by $j_{\nu,m}^{(n)}$, are increasing with ν on $(n - 1, \infty)$, where $n \in \{0, 1, 2, 3\}$ (see 14, 15, 16).

15L. Lorch, P. Szegő, Monotonicity of the zeros of the third derivative of Bessel functions, Methods Appl. Anal. 2(1) (1995) 103–111.
17R. Wong, T. Lang, On the points of inflection of Bessel functions of positive order II, Can. J. Math. 44(3) (1991) 628–651.
The monotonicity of the zeros with respect to the order

Recently, Baricz and Szász12, and Baricz et al.13 found necessary and sufficient
conditions on the parameter ν such that for $n \in \{0, 1, 2, 3\}$ the function
$z \mapsto 2^\nu \Gamma(\nu - n + 1) z^{\frac{n+2-\nu}{2}} J_n^{(n)}(\sqrt{z})$ is starlike (maps the open unit disk of the complex
plane into a starlike domain) and all of its derivatives are close-to-convex (and hence
univalent). In the proofs the key tool was that for fixed $m \in \mathbb{N}$ and $n \in \mathbb{N}_0$ the mth
positive zeros of $J^{(n)}_\nu$, denoted by $j^{(n)}_{\nu,m}$, are increasing with ν on $(n - 1, \infty)$, where
$n \in \{0, 1, 2, 3\}$ (see 14, 15, 16, 17 for more details).

\begin{itemize}
\item 15L. Lorch, P. Szegő, Monotonicity of the zeros of the third derivative of Bessel functions, Methods Appl. Anal. 2(1) (1995) 103–111.
\item 17R. Wong, T. Lang, On the points of inflection of Bessel functions of positive order II, Can. J. Math. 44(3) (1991) 628–651.
\end{itemize}
The monotonicity of the zeros with respect to the order

Recently, Baricz and Szász12, and Baricz et al.13 found necessary and sufficient conditions on the parameter ν such that for $n \in \{0, 1, 2, 3\}$ the function

$$z \mapsto 2^\nu \Gamma(\nu - n + 1) z^{\frac{n+2-\nu}{2}} J_\nu^{(n)}(\sqrt{z})$$

is starlike (maps the open unit disk of the complex plane into a starlike domain) and all of its derivatives are close-to-convex (and hence univalent). In the proofs the key tool was that for fixed $m \in \mathbb{N}$ and $n \in \mathbb{N}_0$ the mth positive zeros of $J_\nu^{(n)}$, denoted by $j_{\nu,m}^{(n)}$, are increasing with ν on $(n - 1, \infty)$, where $n \in \{0, 1, 2, 3\}$ (see 14, 15, 16, 17 for more details).

Conjecture

Is it true that $\nu \mapsto j_{\nu,m}^{(n)}$ is increasing on $(n - 1, \infty)$ for $n \in \mathbb{N}_0$ and $m \in \mathbb{N}$ fixed?

15L. Lorch, P. Szegő, Monotonicity of the zeros of the third derivative of Bessel functions, Methods Appl. Anal. 2(1) (1995) 103–111.

17R. Wong, T. Lang, On the points of inflection of Bessel functions of positive order II, Can. J. Math. 44(3) (1991) 628–651.
Conjecture (Lorch, Muldoona)

aL. Lorch, M. Muldoon, The real zeros of the derivative of cylinder functions of negative order, Methods Appl. Anal. 6(3) (1999) 57–66.

Let $j_{\nu,k}^{(n)}$ be the kth positive zero of $J_{\nu}^{(n)}$.

Another conjecture on zeros of derivatives of Bessel functions

Conjecture (Lorch, Muldoon)

Let $j_{\nu,k}^{(n)}$ be the kth positive zero of $J_{\nu}^{(n)}$. Then there exits a unique value ν_n, $n - 3 < \nu_n < n - 2$, such that for $n \in \mathbb{N}$ we have:

1. $j_{\nu,k}^{(n)} < j_{\nu,k+1}^{(n)}$, when $n - 3 < \nu_n < n - 2$,
2. $j_{\nu,1}^{(n)}$ is a double zero of $J_{\nu}^{(n)}$ when $n - 3 < \nu_n < n - 2$,
3. $j_{\nu,1}^{(n)} \rightarrow 0$ and $j_{\nu,2}^{(n)} \rightarrow j_{\nu,n-2}^{(n)}$, as $\nu_n \rightarrow n - 2$.
4. $\nu_n \rightarrow j_{\nu,1}^{(n)}$ is increasing on $(n - 3, \nu_n)$ for $k \in \{2, 3, \ldots\}$,
5. $\nu_n \rightarrow j_{\nu,1}^{(n)}$ is increasing on $(n - 3, \nu_n)$.

Moreover, numerical tests strongly suggest that the sequence $\{\mu_n\}_{n \geq 1}$ defined by

$$
\mu_n = \nu_n - (n - 3),
$$

is decreasing and $\mu_n - \mu_{n+1} \rightarrow 0$ as $n \rightarrow \infty$.

Árpád Baricz (Babeș-Bolyai and Óbuda University)
Another conjecture on zeros of derivatives of Bessel functions

Conjecture (Lorch, Muldoon)

Let $j^{(n)}_{\nu,k}$ be the kth positive zero of $J^{(n)}_{\nu}$. Then there exists a unique value ν_n, $n - 3 < \nu_n < n - 2$, such that for $n \in \mathbb{N}$ we have:

1. $j^{(n)}_{\nu,1} < j^{(n)}_{\nu,2} < j^{(n)}_{\nu,1} < j^{(n)}_{\nu,3}$, $\nu_n < \nu < n - 2$;
Another conjecture on zeros of derivatives of Bessel functions

Conjecture (Lorch, Muldoona)

aL. Lorch, M. Muldoon, The real zeros of the derivative of cylinder functions of negative order, Methods Appl. Anal. 6(3) (1999) 57–66.

Let \(j_{\nu,k}^{(n)} \) be the \(k \)th positive zero of \(J_{\nu}^{(n)} \). Then there exits a unique value \(\nu_n \), \(n - 3 < \nu_n < n - 2 \), such that for \(n \in \mathbb{N} \) we have:

1. \(j_{\nu,1}^{(n)} < j_{\nu,2}^{(n)} < j_{\nu,1}^{(n)} < j_{\nu,3}^{(n)} \), \(\nu_n < \nu < n - 2 \);
2. \(j_{\nu,1}^{(n)} > j_{\nu,1}^{(n)} \), \(n - 3 < \nu < \nu_n \);
Conjecture (Lorch, Muldoona)

aL. Lorch, M. Muldoon, The real zeros of the derivative of cylinder functions of negative order, Methods Appl. Anal. 6(3) (1999) 57–66.

Let \(j_{\nu,k}^{(n)} \) be the \(k \)th positive zero of \(J_{\nu}^{(n)} \). Then there exits a unique value \(\nu_n \), \(n - 3 < \nu_n < n - 2 \), such that for \(n \in \mathbb{N} \) we have:

1. \(j_{\nu,1}^{(n)} < j_{\nu,2}^{(n)} < j_{\nu,1}^{(n)} < j_{\nu,3}^{(n)} \), \(\nu_n < \nu < n - 2 \);
2. \(j_{\nu,1}^{(n)} > j_{\nu,1}^{(n)} \), \(n - 3 < \nu < \nu_n \);
3. \(j_{\nu,1}^{(n)} \) is a double zero of \(J_{\nu}^{(n)} \) when \(\nu = \nu_n \).
Another conjecture on zeros of derivatives of Bessel functions

Conjecture (Lorch, Muldoona)

aL. Lorch, M. Muldoon, The real zeros of the derivative of cylinder functions of negative order, Methods Appl. Anal. 6(3) (1999) 57–66.

Let $j_{\nu,k}^{(n)}$ be the kth positive zero of $J_{\nu}^{(n)}$. Then there exits a unique value ν_n, $n - 3 < \nu_n < n - 2$, such that for $n \in \mathbb{N}$ we have:

1. $j_{\nu,1}^{(n)} < j_{\nu,2}^{(n)} < j_{\nu,1}^{(n)}, \nu_n < \nu < n - 2$;
2. $j_{\nu,1}^{(n)} > j_{\nu,1}^{(n)}, n - 3 < \nu < \nu_n$;
3. $j_{\nu,1}^{(n)}$ is a double zero of $J_{\nu}^{(n)}$ when $\nu = \nu_n$;
4. $j_{\nu,1}^{(n)} \rightarrow 0$ and $j_{\nu,2}^{(n)} \rightarrow j_{n-2,1}^{(n)}$ as $\nu \rightarrow n - 2$;
Conjecture (Lorch, Muldoona)

aL. Lorch, M. Muldoon, The real zeros of the derivative of cylinder functions of negative order, Methods Appl. Anal. 6(3) (1999) 57–66.

Let $j_{\nu,k}^{(n)}$ be the kth positive zero of $J_{\nu}^{(n)}$. Then there exits a unique value ν_n, $n - 3 < \nu_n < n - 2$, such that for $n \in \mathbb{N}$ we have:

1. $j_{\nu,1}^{(n)} < j_{\nu,2}^{(n)} < j_{\nu,1}^{(n)} < j_{\nu,3}^{(n)}$, $\nu_n < \nu < n - 2$;
2. $j_{\nu,1}^{(n)} > j_{\nu,1}$, $n - 3 < \nu < \nu_n$;
3. $j_{\nu,1}^{(n)}$ is a double zero of $J_{\nu}^{(n)}$ when $\nu = \nu_n$;
4. $j_{\nu,1}^{(n)} \to 0$ and $j_{\nu,2}^{(n)} \to j_{n-2,1}^{(n)}$ as $\nu \to n - 2$;
5. $\nu \mapsto j_{\nu,k}^{(n)}$ is increasing on $(n - 3, n - 2)$ for $k \in \{2, 3, \ldots\}$ and $\nu \mapsto j_{\nu,1}^{(n)}$ is increasing on $(n - 3, \nu_n)$.
Conjecture (Lorch, Muldoona)

aL. Lorch, M. Muldoon, The real zeros of the derivative of cylinder functions of negative order, Methods Appl. Anal. 6(3) (1999) 57–66.

Let $j_{\nu,k}^{(n)}$ be the kth positive zero of $J_{\nu}^{(n)}$. Then there exits a unique value ν_n, $n - 3 < \nu_n < n - 2$, such that for $n \in \mathbb{N}$ we have:

1. $j_{\nu,1}^{(n)} < j_{\nu,2}^{(n)} < j_{\nu,1}^{(n)} < j_{\nu,3}^{(n)}$, $\nu_n < \nu < n - 2$;
2. $j_{\nu,1}^{(n)} > j_{\nu,1}^{(n)}$, $n - 3 < \nu < \nu_n$;
3. $j_{\nu,1}^{(n)}$ is a double zero of $J_{\nu}^{(n)}$ when $\nu = \nu_n$;
4. $j_{\nu,1}^{(n)} \to 0$ and $j_{\nu,2}^{(n)} \to j_{n-2,1}^{(n)}$ as $\nu \to n - 2$;
5. $\nu \mapsto j_{\nu,k}^{(n)}$ is increasing on $(n - 3, n - 2)$ for $k \in \{2, 3, \ldots\}$ and $\nu \mapsto j_{\nu,1}^{(n)}$ is increasing on $(n - 3, \nu_n)$.

Moreover, numerical tests strongly suggest that the sequence $\{\mu_n\}_{n \geq 1}$, defined by $\mu_n = \nu_n - (n - 3)$, is decreasing and $\mu_n - \mu_{n+1} \to 0$ as $n \to \infty$.